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Abstract

While a class of models and techniques in deep learning has achieved
empirical success, the interactions of their underlying mechanisms are
under-explored. Oftentimes, researchers who seek clarity in the science
of deep learning adapt theoretic tools developed in other scientific fields.
In statistical mechanics, an approximation technique for complex, inter-
active systems called Mean Field Theory (MFT) is now broadly applied
to explain why deep learning works. In particular, MFT highlights the
dynamical system similarities between a deep network’s parameters and
interacting particles. By adapting MFT to study a network’s signal prop-
agation, theorists can explore behaviors of very large, general neural net-
works that experimental work alone can’t cover [Saul et al., 1996]. Most
recently, various papers on this topic have been gaining popularity [Hanin,
2018, Karakida et al., 2018, Kawamoto et al., 2018, Pretorius et al., 2018,
Schoenholz et al., 2016].

To machine learning practitioners, however, the conference papers on
the topic may be too short to be accessible. This paper serves as an
introduction to mean field formalism as applied to study properties of
neural networks. Readers who wish to understand the subfield should
find here tools, definitions, illustrations that clarify the motivation and
assumptions used in current works.

We first introduce mean field theory as in its historical context of
physics, with an example on the Ising model. Then we connect MFT to
machine learn through parallels drawn in variational inference. Finally, we
summarize the setups of MFT modelling in recent advances to help under-
stand neural networks’ expessivity [Poole et al., 2016], ResNets [Yang and
Schoenholz, 2017b], Convolutional neural networks [Xiao et al., 2018], and
most recently batch normalization [Yang et al., 2019] and gradient descent
dynamics. In summary, we show that application of MFT touches very
popular architectures and empirical techniques in today’s deep learning
era.
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1 MFT In Statistical Physics

Strong assumptions notwithstanding, some simplified models can explain real-
world observations without resorting to very difficult mathematics. Originally,
Mean Field Theory stemmed from such models physicists used to explain macro-
scopic phenomenons.

The Ising Model proposes that spins of particles arrange themselves on a
chain in one-dimensional space, or a lattice in higher dimensions. Furthermore,
each particle takes on a binary state: up or down. In addition, every spin’s
(stochastic) properties are only dependent on its nearest neighbors: two on a
line, four in a plane, and 2d in d dimensions.

Figure 1: In a 2D Ising Model, each particle is influenced by its 4 nearest
neighbors.

This section sets up a physical system under the Ising Model, and introduces
the usage of mean field approximation in deriving phase transition, applied to
magnetization, largely based on Statistical Mechanics lecture [Susskind, 2013].

1.1 Isolated Magnet In a Heat Bath

Consider a stylized field of magnets, each pointing either up or down. The
system is in equilibrium at temperature T. In addition, to make the notation
clear, associate with each site a spin σ = +1 be up, −1 if down. This allows
us to write down the energy function, such that the magnet takes on different
energies at different orientations.

Recall that the normalization constant in the Boltzmann distribution, de-
noted by Z, is also called the partition function, with varying temperatures
1; oftentimes in physics, Z is used to calculate macroscopic properties of the
system, such as energy, pressure, magnetization, and entropy.

Suppose there is only one tiny magnet in a heat bath. Suppose µ is the
magnetic moment, B is the magnetic field, then we can write E = µBσ = −Jσ

1The Boltzmann distribution for one particle and a system of particles at maximal
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for numeric factor J . We obtain its partition function, summed over all 2
configurations.

Z =
∑

configs

eβJσ = e(+1)βJ + e(−1)βJ = eβJ + e−βJ = 2 coshβJ

The whole system of N individual magnets has a factor partition function, which
is the individual spin’s raised to the N -th power, since each one is independent.
That allows us to the take its logarithm and get a sum. We calculate the
expected value of the thermodynamic energy, which is the negative inverse times
the derivative of the partition function with respect to the inverse temperature.

Eone spin = − 1

Z

δZ

δβ
= −J sinh(βJ)

cosh(βJ)
= −J tanhβJ

The average σ, the expected value of the spin, is therefore 〈σ〉average =
tanhβJ . The probability of the spin pointing up is very high when J is positive,
β is large. That is, low temperature corresponds to the spin pointing up in the
setup.

1.2 Ising Model

The Ising Model for our purpose is a simple model with many little configura-
tions (spins) pointing up or down, with each site spaced equally far apart. In
high dimensions, they form a lattice. The Ising Model states that the energy
contribution is only from a particle itself and its nearest neighbors. For historical
reasons, many problems in physics and statistics are framed this way. Moving
on from an isolated magnet, consider a 1-D Ising model of an array of magnets.
The energy function i.e. the Hamiltonian of the whole set is E = −J

∑
σiσi+1.

Its partition function is thus over all configurations Z =
∑
e−Jβ

∑
σiσi+1 .

1.2.1 Correlation function

Given that a particular magnet is up, what is the conditional probability that
n links down the magnet is also up? Alternatively, we can frame the question
as finding the average of the product of the spins at two different locations.

entropy

pi ∝ e−
Ei
T and pconfigi

=
(
e−

Ei
T
)/ ∑

configs

e−
Ej
T

where Ei is the energy associated with the state of interest. As per convention, β = 1/T , and
we will use β for inverse temperature throughout this paper.
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Figure 2: A 1-D Ising Model of ferromagnetic σ‘s.

Intuitively, the correlation diminishes as the distance increases, yet there
is a possibility that the bias propagates, as if the system has some lineage of
memory. To diagnose, focus on the links between the spins rather than the spins
themselves. For a finite chain with its first spin pointing up, we will sum up the
partition function in that first up added by first down.

Consider a change of variable trick µi → σiσi+1. Since σ1 is known, the
product µ1 = σ1σ2 is sufficient for deriving σ2. The product µi describes align-
ment and has two possibilities, parallel or anti-parallel. Knowing the µ’s, as
long as you know the first spin, is equally good as knowing all the σ’s. Now this
is useful because the energy is just made up of these bond variables:

E = −J
∑

σiσi+1 = −J
n−1∑
i

µi

Notice that there are 1 fewer bonds than all the particles. In our transformation
of the energy makeup, the individual bonds have no relationship among them
as far as the equation goes. The information is retained, also, since it is as good
to know the µ’s as it is to know σ’s. So now you can substitute the sum over
spins in Z, the partition function, with the sum of the values of the bond:

Z = 2
∑
µ

e−
∑
i Jβµi

The factor 2 arises from the possibilities for the first spin, which we condition on.
Recall that N = ||i|| = ||µ||+1. The Boltzmann factor here is a product, assum-
ing N spins so ‖i‖ = N . As such, we factorize the partition function into that
of one spin’s energy raised to the ‖µ‖-th power and obtain Z = (2 coshβJ)N−1,
a familiar-looking partition function we saw in Section 1.1.

Figure 3: A chain of n dependent σ‘s can be seen as a set of n− 1 independent
ferromagnets ~µ.

Despite the partition function, the physical meaning is different from N-1
isolated magnets, because µ is the product of the neighboring spins. Now con-
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sider 〈µ〉 = E(µ), the average correlation between immediate pairs of neighbors.
Through the same calculus

〈µ〉 = 〈σiσi+1〉 = tanhβJ

where positive J biases a positive value. In the physical system, this indicates
a tendency towards alignment, in a way that is better than even chance. We
write the correlation between i and i+ n spins as their product:

〈σiσi+n〉 = 〈σiσi+1σi+1σi+2 · · ·σi+n〉 = 〈µ1µ2 · · ·µn−1〉

If we assert the independence of the µ’s in this formulation, and substitute the
average.

〈σiσi+n〉 ≈ 〈µ〉n−1 = (tanhβJ)n−1

Given this being higher than the uniformly random expectation of 1
2 , we see a

long range memory in magnetization: everything will be biased to go up if the
first one is up.

1.2.2 Factorization Approximation in MFT

We discuss the transformations used: σiσi+1 → µi and µi → 〈µ〉. The variable
substitution σiσi+1 → µi induces a duality i.e. an equivalence between a theory
of spins of nearest neighbor and another system with spins are independent to
each other. Originally a bond substitution, µ takes on the form of independent
spins in a brand-new system made of bonds. Though the bond model seems
physically removed, its abstraction greatly simplifies mathematics.

The mean-field model only exists in the dual: the mean energy EMF =
−J

∑n−1
i 〈µ〉 is exact from actual energy E = −J

∑n−1
i µi. In so far as we

care about the summation, each of µi’s energy contributes independently, thus
justifying the the Mean Field Approximation. In computing the correlation
statistic, MFT becomes a factorization approximation, stated as∏

i

µi ≈
∏
i

〈µ〉 = 〈µ〉n−1

Though all MFT has its origin in taking the average, for simplicity, we refer
to this specific approximation strategy as ”factorization”.

1.3 High Dimension Ising Model and Mean Field Approx-
imation

2D Ising model gets significantly harder. In fact, Ising himself got it wrong.
In higher dimensions, we can see that the fluctuation to be small, because the
number of neighbors on a lattice grows 2d with dimension d. Given this insight,
we can see the Ising model as a small subsystemm plus a heat bath. Focusing
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on one spin of a small magnet, assumed to be at equilibrium with the rest of
the environment, with the partition function

Zone spin =
∑

e+βJσ = eβJ + e−βJ = 2 coshβJ

Zwhole system = (eβJ + e−βJ)k = 2 cosh(βJ)k

Recall the expected energy per spin

Eone spin = −1

z

δz

δβ
= −J sinh(βJ)

cosh(βJ)
= −J tanhβJ.

So in expectation, 〈σ〉average = tanhβJ . This sets up for mean field approxima-
tion: In approximating the bias, we assume a high dimensionality Ising where
the average fluctuation is a lot smaller than the average bias. There, using
the average is a pretty good approximation for individual behavior if the num-
ber of neighbors, 2d, is large. For one spin, Ei = −jσi

∑
j neighboring i σj . For

simplicity, let

〈σi〉 = ¯̄σ and 〈σneighbors to i〉 ≈ 〈σall spins〉 = σ̄

Then the sum is just the number of neighbors, 2d, times the average of
neighbor spins, E = −Jσi(2dσ̄).

This is a particular spin sitting in the bath i.e. field of all the others, evincing
a mean field formulation. The field here denotes the field experienced by i,
sitting in the field of all the others. Now we do the partition function as usual,
except we substitute a constant field J → 2dJσ̄. The same calculus gives us

¯̄σ = tanh[(2βdJ)σ̄].

Similarly, if they have an average of ¯sigma, then ¯̄σ = ¯sigma. This gives an
equation that applies to all temperature:

σ̄ = tanh[(2βdJ)σ̄]

Let y = (2βdJ)σ̄, then
y

2βdJ
= tanh y

Recall β being inverse temperature, so T
y

2dJ
= tanh y.

We plot both sides at different temperatures, as shown in Figure 4. The only
possible solution is y = 0, at very high T , so the average of sigma is 0, as
expected. As we lower the temperature, the slope of this curve on the left-
hand-side decreases to the point of 1, so we are tangent to the tanh(.), when
T = 2dJ . This is a critical point and signals that our approximation shows a
phase transition!
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Figure 4: phase transition When T = 2dJ, T y
2dJ = y, we see a hyperbolic

tangent curve tanh y only intersecting with line y at the origin y = 0, as shown
on the left plot. As we lower the temperature as when T = dJ, T y

2dJ = y/2,
we see an additional critical point where they intersect, as shown on the right
plot. The point corresponds to a critical temperature where phase transition
happens.

1.3.1 Self-averaging MFT

At high dimensions, we ignore the thermal fluctuations of particles and derive
an approximation for the probabilistic dependency between spins of magnets.
This resulting phase transition does not exist in the 1D Ising Model, and cannot
be tested at infinite dimension. Because the spin is assumed to be no differ-
ent from all others, this MFT flavor is sometimes called self-consistent field
approximation. We call this substitution strategy ”self-averaging”.

As demonstrated, it takes advantage of large scale systems for what physi-
cists call partial understanding : to explain qualitative phenomenon in empirical
observations. This lends MFT naturally to machine learning.

1.4 Conclusion

The Ising Model is a simplified generating mechanism in statistical physics that
encapsulates complex behavior. In 1D, magnets influence each other with de-
caying correlation at long distance. By seeing each spin as a mean of the field of
spins it is in, we demonstrate two MFT flavors, factorization and self-averaging,
and derive the phenomenon of magnetization.

The mean field approach conditionally simplifies the Ising Model’s mathe-
matics. In studying phase transition, the MFT relies on high dimensionality,
which dominates the criterion for the derivation. Essentially, a particular sit-
uation was picked as a way to make a spin have a lot of nearest neighbors to
apply the mean field.

Without mean field assumptions, a close form would be very hard to com-
pute. Unsurprisingly, extending mean field approaches is demonstratively pow-
erful in high dimensional statistics. The next section introduces Variational
Mean Field methods in statistics.
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2 MFT in statistics

One of the major problems in statistics is to approximate hard to compute
probability distributions for a system. This is especially important in Bayesian
Inference and statistical machine learning, where a joint probability distribution
over unobserved and observed data is required. The distribution maybe easy to
compute for some small models. However, for large complex models, it is not
at all easy. Exact inference on such models is not practically possible. We look
at a class of approximation techniques called variational methods that attempt
to approximate the probability distributions as best as possible. In the section
that follows, we briefly introduce the problem of inference and how a mean-field
assumption helps in efficiently computing the required estimate of probability
distribution. The sections is largely based on Blei et al. [2017].

2.1 Variational Inference

In variational inference, we model our system as a collection of random variables
where some variables are hidden(Z) and some are visible. By hidden, we mean
that the values of these variables are not observed directly. It follows naturally,
that the random variables for which the values are observed are called visible
variables. The visible variables are also called evidence variables (or data) due
to the same reason. In a Bayesian setting, the hidden variables help govern the
distribution over the observed variables. The influence can be modeled as a
graph shown below:

Figure 5: A graphical representation of a hidden variables influencing a visible
variables

The edge drawn in the graph above relates variables Z and X as a con-
ditional distribution P (X|Z). We now look at a general problem formula-
tion. Consider hidden variables Z = {Z1, Z2, · · · , Zm} and visible variables
X = {X1, X2, · · · , Xn}. Inference in a Bayesian setting usually involves, cal-
culating the posterior over hidden variables i.e probability of hidden variable
conditioned on observed data. By Bayes theorem, we have

P (Z|X) =
P (X,Z)

P (X)
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The denominator P (X) is the marginal probability of the observations also
called the likelihood of evidence. This is obtained by marginalizing the hidden
variables in the joint distribution P (X,Z). This is simply the sum of the join
distribution over all possible configurations of the hidden variables. Thus the
likelihood of the evidence P(X) is represented as

P (X) =
∑
Z

P (X,Z)

In order to calculate the posterior over hidden variables, we require the like-
lihood of evidence. This is all well and good for small models, but for large
complex models, the number of hidden variables tends to be very large. In this
case, the sum in the likelihood of evidence becomes very hard to compute since
it involves summation of a very large number of terms. The number of terms
in the sum increases in an exponential manner with respect to the number of
hidden variables. It is now clear that the sum is intractable for large number of
hidden variables and some sort of approximation is required for P (Z|X).

But how do we go about approximating P (Z|X)? One method for approx-
imate inference is a sampling based method called Monte Carlo Markov Chain
(MCMC) sampling. MCMC algorithms are very popular and find applications
in a wide number of problems. One key feature of such methods is that they
provide guarantees (asymptotically) of producing exact samples from the target
density (the density that had to be approximated). This makes them ideal for
scenarios that require precise samples. However, MCMC tends to be computa-
tionally expensive and does not scale well (in terms of computation time) for
large and complicated models. For such cases, variational inference acts as a
faster alternative. Even though variational inference, does not provide guaran-
tees similar to MCMC, they give reasonable results. Thus they are suitable for
scenarios where there is huge amount of data and a fast exploration through
models is needed.

In variational inference, we introduce a family of distributions Q over the
hidden variables Z. Each member Q(Z) in the family Q is a potential approxima-
tion to the posterior over the hidden variables. To find the best approximation,
we resort to the Kullback-Liebler divergence between our posterior P (Z|X) and
a member of Q. The Q(Z) that is closest in KL divergence with our posterior
is the best approximation.

Q∗(Z) = arg min
Q(Z)∈Q

DKL ( Q(Z)||P (Z|X))

We have now converted our inference problem into an optimization problem!
However, we are not yet done. The KL divergence cannot be directly computed
since we require the expectation over the logarithm of the posterior which we
are trying to approximate P (Z|X) in the first place.

DKL ( Q(Z)||P (Z|X)) = E[logQ(Z)]− E[logP (Z|X)]

Here, the expectation is with respect to the distribution Q(Z). We expand
P (Z|X) in the KL divergence above and find that, instead of minimizing the
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KL divergence directly, we can minimize a new objective which is the difference
between the expectation of the logarithm of distribution Q(Z) and the expecta-
tion of the logarithm of the joint distribution of observed and hidden variables.
The log-likelihood of evidence P(X) does not depend on the distribution Q(Z)
and therefore remains a constant.

DKL ( Q(Z)||P (Z|X)) = E[logQ(Z)]− E[logP (X,Z)] + logP (X)

This new objective is called the ELBO or the evidence lower bound.

ELBO(Q) = E[logP (X,Z)]− E[logQ(Z)]

The reason it is called so is because it lower bounds the log-likelihood of evidence.
That is,

logP (X) ≥ ELBO(Q)

In its historical context, the ELBO was derived using the properties of KL di-
vergence and the Jensen’s equality. The derivation can be found in the appendix
8.1. We observe that the ELBO is essentially the negative KL divergence plus
some constant. Thus, our problem breaks down into maximizing the ELBO.

With the stage for variational inference set and done, we now introduce the
mean field assumption. We note that the optimization of the ELBO objective
depends on the variational family of distributions Q. Thus, the complexity of
the optimization directly depends on the complexity of the family. So, in the
spirit of mean field methods as first used in statistical physics where complex
systems are approximated by simpler independent systems, we choose a family
Q which is simple. We assume that the hidden variables are independent and
that they factorize over the mean field distribution i.e each hidden variable Zi
with its own distribution Qi.

Q(Z) ≈
m∏
i=1

Qi(Zi)

The family of distributions that is chosen forQi is usually the exponential family.
It turns out that this family along with independence assumptions simplify the
optimization of the objective. We will look into this into a little more detail
later. We apply the variational mean field method to an example, specifically the
high dimensional Ising model. The full derivation can be found in the Appendix
8.2

We have seen the variational inference converts the original inference prob-
lem into an optimization problem that maximizes the ELBO. The posterior
is then approximated with a family of mean field distributions i.e. factorized
models that assume sparse interaction terms 2.

Superior in computability, MF sacrifices interaction terms between groups
of latent variables. The independence assumption welcomes many optimization

2For factorization justification, see exponential-family-conditional models, a.k.a condition-
ally conjugate models where latent variables are independent.[Blei et al., 2017]
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methods, such as coordinate gradient ascent: at every iteration, some coor-
dinates are held fixed while others are optimized. Effectively, the coordinates
allow the ELBO to climb to a local optima. If an exponential family is used for
the mean field distribution, updates in the coordinate ascent algorithm simplify
resulting in faster computations.

2.2 Limitations

Despite the performance boosts of mean-field variational inference in terms of
computation costs, the method suffers from limitations. The main limitation
of mean-field inference is that it explicitly ignores correlations between latent
variables when making the independence assumption. As a result, despite cap-
turing the marginal probability distribution of latent variables, it fails to capture
their correlation. Moreover, the marginal variances of the approximation under-
represent the true posterior. This behaviour can be explained by the form of KL
divergence used in mean field variational inference. The KL divergence penalizes
mass placed in variational distribution Q(Z) when the true posterior P (Z|X) is
small. This basically means, that Q(Z) is forced to be small whenever P (Z|X)
is small. The above behaviour can be see as ’zero-forcing’ since P (Z|X) = 0
implies Q(Z) = 0 [Minka, 2005]. This zero-forcing behaviour emphasizes on
modelling the tails of the distribution rather than bulk which results in under-
estimating the variance of the true posterior. Another consequence of this is
that mean-field variational inference does not approximate well when the true
posterior is a multi-modal distribution. It tends to model the mode with highest
probability mass rather than the entire distribution.

Figure 6: The approximate distribution q models the tails of the true distribu-
tion rather than the mass [Minka, 2005]

Furthermore, Wainwright and Jordan [2008] show that optimization prob-
lem becomes increasingly non-convex as more and more possible dependencies
are broken by the mean-field variational distribution. Stated differently, if the
variational distribution contains more structure, certain local optima do not
exist. This means that as a result of the simplifying mean field assumption, the
optimization can climb to an erroneous local optima.
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3 When is Mean Field Good?

In the previous sections, it appears that MFT aggressively simplifies complex
mathematics without sacrificing fidelity. Though conceptually intriguing and
empirically successful, it is not yet clear how such a mean field strategy can be
formally employed. In particular, why should the particles be self-consistent in
a large network, how will the observed transition in the mean field generalize,
when are interaction terms “safe” to ignore, and why are factorized distributions
a good choice in optimization. We leave the bulk of the research to the reader
by summarizing some key ideas.

Suitability: Like the Ising Model where MFT originated, the probabilistic
graphical models of concern are generally large. When the statistics of inter-
correlation at long distances decay, the maximal terms dominate, provided that
the energy is modeled as a summation dependent on interactive strengths. This
justifies the first-order methods in method field analyses. In addition, part of the
model’s apparent success came from studying behaviors near extremal points,
such as zero temperatures or very high dimensions. This strategy pushes down
the influence of other terms and ensure the dominance of the averaging effects.

MFT’s empirical success may be due to appropriate mean-field assumptions,
because the decoupling of variables is not too far from what one sees in the true
posterior due to natural clustering: some particles are closer to each other than
to random particles, thus allowing the variation in parameter to capture the
diversity in observation [Xing et al., 2002].

Tests: MFT trade-off is reflected in the difference between the observation
and the approximation. In physics, this is done via the Gibbs-Bogoliubov-
Feynman inequality; in variational statistics, it is done via testing the distance
from the ELBO, since the mean-field models’ marginal variances are lower
bounds on the variance of real data. Specifically, TAP correction [J. Thou-
less et al., 1977] and second order approximations [Kappen and Wiegerinck,
2000] are commonly used in conjunction with MFT to improve the quality of
mean-field results.

Heuristics: For a heuristics-based procedure, we summarize several strate-
gies in using MFT. The setup of the problem needs to have elements of stochas-
ticity, the number of particles need to reach a scale, so that a self-averaging
behavior could be observed. In approximate inference, factorization is the most
prominent in variational methods.

4 Setting Up A Mean Field Theory of Deep
Learning

To recap what we learned so far, in 1.2.2 and 2.1, we reviewed factorization
MFT that is widely used in variational inference. The variational mean field
analysis connects statistical physics and Boltzmann machine approximations for
neural networks. Going beyond the variational inference setting, and perhaps
closer to the roots of physics, the rest of this survey focuses on a new line of
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deep learning theory work that places mean field analysis squarely at its center,
which we coin as a kind of phenomenological deep learning.

While large-scale neural networks work amazingly well, many phenomenons
they exist remain elusive. In untangling various effects, empirical work alone
is often insufficient, partly due to its scale limit in coverage across data sets,
parameters, and architectural features. A phenomenology is thus desirable. This
section lays down a shared mean field formalism used by [Chizat and Bach, 2018,
Mei et al., 2018, Yang and Schoenholz, 2017a,b, Yang et al., 2019] to study the
efficacy of deep learning itself.

4.1 A Phenomenological View

Just like statistical mechanics’ view of the natural world, researchers believe
that deep learning exhibits general phenomenons that can be studied, indepen-
dent of its microscopic details. This belief is subtly different from the scientific
method where new experimentation is used to test hypotheses; here, we seek a
description of anticipated behavior of a system through model, ex post facto.

Figure 7: Methods that discover general insights in large scale learning make
trade-offs between incurring expensive computation and making strict theoretic
assumptions.

Mean field theory becomes a natural tool in this pursuit for generalizing
insights, such as optimization behaviors at limits [Mei et al., 2018], why neural
networks generalize [Jacot et al., 2018], where gradient explosion and vanish-
ing happen [Yang and Schoenholz, 2017b], and the efficacy of BatchNorm in
stabilizing training [Ioffe and Szegedy, 2015, Yang et al., 2019].

4.2 A Gaussian Processes View

A neural network with infinite number of neurons is approximated as Gaus-
sian Processes, similar to that of Neural Tagent Kernels [Jacot et al., 2018,
Jaehoon Lee, 2018] or deep signal propagation [Poole et al., 2016].

Common Setup

14



x Network input

D Input dimension

N Number of Neurons

{Wij} Weight matrix

{bj} Bias vector

σ2
w Variance of weights

σ2
b Variance of biases

k Number of SGD run

Common assumptions

1. Either ”Over-parametrization Regime” with N > nc for constant
c where the weights don’t move very far, or ”Mean Field Regime”
where there are only a few optimization steps

N ' D , k ∈ O(1) andD / k ≤ n

2. The hidden layer has infinite width

3. Random weights initialization

4. Fully-connected

For non-linearity φ acting on input x, and feeding into affine transformation
to output z, we write

zi(x) = bi +

N∑
j=1

Wijφ(x) (1)

By Central Limit Theorem, as N → ∞, z will be Gaussian distributed in the
limit if φi and φj are independent. This independence is easy to show in the
case of assumptions 1, 2, 3, and 4: Because of random initialization, the weights

W and biases ~b are drawn i.i.d. from Gaussians of variances
σ2
w

layer width and σ2
b ,

respectively. As a result, there is no statistical dependence between different
neurons pre-activation.

We thus replace each pre-activation with Gaussian random variables pre-
activation, whose coupling can be ignored. This leads to a formulation of mean
field theory. Regardless of the number of layers, a feed-forward infinite-width
network can be approximated with Gaussian Processes if randomly initialized.
Note that is just the most common formulation, and some of these assumptions
could be relaxed..
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At every layer, we can take the output of the previous layer, and define a
recurrence relationship layer wise. This effectively places a dynamical system
view by studying the changes of inputs from layer to layer over the space con-
variance matrices. As the width goes to infinity, this Gaussian process between
input and output can be seen as deterministic. This feedforward dual is studied
more extensively in Section 5.1.

4.3 A Dynamical System View of Gradient Descent

If we see the training of neural network as a dynamical system, then the state
update is just a step of gradient descent. This helps the study of deep learn-
ing training dynamics through the lens of optimization. Studying the training
dynamics at some notion of limits leads to results on trainability, gradient ex-
plosion, and landscape at convergence.

Gradient descent updates are constructed in the form of a recurrence relation
θi = θi−1−∇θi−1

L[i−1]. Since gradient descent is an Euler method in numerical
analysis, prior work on numerical methods can be leveraged. With very small
learning rate, this can be seen as an ordinary differential equation through a
gradient flow formulation.

4.3.1 Gradient Flow

For our purpose, a gradient flow is roughly defined as

u′ = F (u) where ∃ε ∈ R s.t.

∫
Ω

utF (u) = ε
d

dt
ψ(u(t))

Naturally, we choose ε to be our learning rate, or a scaled factor of our step
size. Without loss of generality (since using constant gradient step is the same
as scaling loss function by a constant), we can write

θ̇i = −∇θiL(θ1, · · · , θn)

Specifically, stochastic gradient descent in this network 4.2 can be approximated
with a Wasserstein Gradient Flow. Wassterstein gradient flow is defined on
the space of probabilities with Wasserstein distance. This framework is flexible
with natural equivalences to a partial differential equations definition.

∂tρ−∇ · (ρv) = 0 where v = ∇[δF/δρ]

4.3.2 Approximating Stochastic Gradient Descent

Studying the movement of the weights is hard when we only have a few steps of
gradient descent, because the gradients can be large, and the space can be non-
convex. Instead, one can construct a gradient flow with respect to a Wasserstein
metric on a probability measure for the kind of functions the network approxi-
mates.
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The idea is that in the suitable scaling limit, the reduction of population loss
is captured by ρ; on the other hand, ρ is the solution to a partial differential
equation. As a result, SGD can be approximated using Wasserstein gradient
flow. This is useful in studying macroscopic phenomenons, because the scale
limit can be then derived from the PDE formulation, often by examining the
dependency of the critical points with respect to the variables. This flavor is
very similar to the duality view in physics, as seen in Section 1.2.2, which often
accompanies the application of MFT. This duality is, however, not exact, and
thus requires further examination to hold.

Notably in [Mei et al., 2018], the cost function in the space of (P,W2) is
viewed as a gradient flow. The results and approach are further summarized in
Section 6.

4.4 Notable Challenges

As an exercise in the formalism, we introduce two examples of mean-field centric
approaches to explaining deep learning phenomenons, roughly broken down by
architecture and optimization. Because the works introduced in each one are
exceedingly similar in their assumptions, they face similar limitations inherit
to the framework, such as not being able to discover interesting higher order
behaviors.

An easy criticism of feature MFT such as those by Yang et al. [2019] is
that it is a super fancy technique to study the explosion of gradients. A couple
of strong assumptions have not been generally relaxed: infinite width, convex
activation, and in the case for the optimization papers, the number of layers of
the network. In addition, since the mean field theory is incomplete, with each
added feature, new mathematics are needed, which makes the MFT non-trivial
to extend. Finally, as a problem-solving strategy MFT can only yields results on
the phenomenological level, and can thus not clarify narratives on microscopic
behavior, as seen in 2.2 and 3.

5 Neural Network Features

A group of researchers extend this mean field analysis to different network fea-
tures of the neural networks, such as residual networks [Yang and Schoenholz,
2017b], convolutional layers [Xiao et al., 2018], and batch normalization [Yang
et al., 2019]. The motivation is clear: since these are features seen in deep
learning that has become empirically irreplaceable, it is assumed to be fruitful
to understand why they work, whether they break down, in order to come up
with better theories and training schemes.

5.1 Feed-forward networks

The paper by Poole et al. [2016] is concerned with signal propagation in feed
forward neural networks. Combining concepts of mean field theory and Riemann

17



geometry, they give a theoretical formulation that proves that the expressivity
of neural networks increases exponentially with depth. We briefly discuss their
approach in this section.

Signal propagation in deep neural networks can be understood by studying
the geometry of simple manifolds in the input layer x[0] . Essentially, we would
like to know how the geometry is modified as the manifold propagates through
numerous layers. For the simplest case of a single vector, one can track its
‘length’ i.e. the squared norm, represented as:

ql =
1

Nl

Nl∑
i=1

(zli)
2

where ql is the normalized squared norm of pre-activations at layer l. Under
the mean field assumption, we can obtain a iterative map for ql by propagating
Gaussians through layers.

ql = V(ql−1|σw, σb) ≡ σ2
w

∫
Dzφ

(√
ql−1z

)2

+ σ2
b (2)

where Dz is the standard Gaussian measure. The function V is a length-map
that predicts how the length of an input changes as it propagates through the
network. For a monotonic non-linear activation (assumed to be sigmoidal in the
paper), the length map is a monotonically increasing concave function. We can
say that a fixed point q∗(σw, σb) has been reached when the length ql does not

change with respect to the length in the previous layer ql−1 i.e ql

ql−1 = 1. In
other words, the fixed points are obtained by observing the intersections of the
length map with the unity line.

5.1.1 Transient chaos

Consider a slightly complex scenario where we study the layer-wise propagation
of two inputs3 to a layer. The geometry of the two inputs as they propagate
through the network is captured by a 2× 2 matrix of inner product

ql12 =
1

Nl

Nl∑
i=1

zli(x
1)zli(x

2)

Similar to (2), we can derive a correlation map for ql12

ql12 = C(cl−1
12 , ql−1

11 , ql−1
22 |σw, σb) ≡ σ2

w

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b (3)

where cl12 = ql12(ql11q
l
22)−1/2 is the correlation coefficient4. Together (2) and

(3), form a theoretical prediction for the geometry of a pair of points5 as they

3These can be from the input layer x[0] or pre-activations in intermediate layers
4Also corresponds to the cosine similarity between pre-activations
5Points in the input manifold for a layer or in other words two inputs
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propagate through a neural network. Analyzing the the equations in the σw and
σb plane reveals and interesting order to chaos transition for the system. The
relation between two points can be tracked by the correlation coefficient cl12.
Using the fixed point q∗(σw, σb) for the length of a single vector, we calculate
an iterative correlation coefficient map (C-map) as

cl12 =
1

q∗
C(cl−1

12 , q∗, q∗|σw, σb)

The C-map has a fixed point at 1 (c∗ = 1). However, the stability of the fixed
point depends on the slope at 1

χ1 ≡
∂cl12

∂cl−1
12

∣∣∣∣∣
c=1

= σ2
w

∫
Dz
[
φ
′
(
√
q∗z)

]2
The equation χ1(σw, σb) = 1 yields a phase transition boundary in the σw

and σb plane, separating it into a chaotic and an ordered phase. For a fixed
σb, we get a phase transition as σw increases. For small σw, c = 1 is a stable
fixed point (χ1 < 1). This corresponds to the ordered phase where two points
converge to each other as they propagate through the network. In the region
with large σw, c = 1 is no longer a stable fixed point. The weights dominate
the biases and de-correlate the inputs. This corresponds to the chaotic region
(χ1 > 1) where nearby points separate as they propagate through the network
eventually becoming orthogonal (maximum de-correlation; c∗ = 0). In the
intermediate region near the phase transition boundary (χ1 → 1), also called
the edge of chaos6, an equal competition exists between the weights (which
along with the non-linearity, decorrelate the inputs) and biases (which correlate
the inputs) exist leading to a finite fixed point c∗ (0 < c∗ < 1). Thus χ1, can
be considered as a multiplicative stretch factor.

Poole et al. [2016] extend the above results for a complete manifold in input
space and prove that in the chaotic phase of the neural network, the simple
input manifold de-correlates and becomes increasingly (exponentially) complex
with depth. This implies that a deep network is able to compute exponentially
complex functions over simple low dimensional manifolds.

5.1.2 Gradients

While Poole et al. [2016] investigates the nature of the signal as it propagates
through the network in a forward dynamics, Schoenholz et al. [2016] study
the nature of gradients drawing in a duality between forward and backward
propagation.

Consider the backpropagtion of a given loss E ,

∂E
∂W l

ij

= δliφ(zl−1
j ) δli =

∂E
∂zli

6Term coined by Yang and Schoenholz [2017b]
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Within mean field theory, it is clear that the scale of fluctuations of the gradient
of weights in a layer will be proportional to the second moment of δil [Schoen-
holz et al., 2016]. The authors note that unlike the pre-activations in forward
propagation, δli will not be a Gaussian distribution even for N →∞. However,
we can obtain a recurrence relation for q̃laa = E

[
(δli)

2
]

under the assumption
that the weights used during backpropagation are drawn independently from
the weights used in forward propagation.

q̃laa = q̃l+1
aa χ1

Note: The equation above also contains a factor proportional to Nl+1/Nl which
is unity for our setup. Since χ1 depends only on the asymptotic c∗, the above
equation has an exponential solution resulting in a phase transition boundary
similar to what was discussed in the previous section, but for gradients. When
in the ordered phase (χ1 < 1), the gradients are expected to vanish over a
depth whereas in the chaotic phase (χ1 > 1), gradients are expected to explode.
On the edge of chaos, namely region χ1 → 1, the gradients should be stable
regardless of depth.

The results in 5.1.1 and 5.1.2 lead to a trainability vs expressivity trade-
off for fully-connected neural networks. While deep networks operating in the
chaotic phase tend to be more expressive (with expressivity increasing with
depth up to a fixed point), the gradients for such networks tend to explode with
increase in depth. For networks on the edge of chaos, extremely deep neural
networks can be trained. This is because information about the inputs is able
to propagate forward and information on gradients are also able to propagate
backwards through the deep network.

5.2 Resnets

In the previous sections, we have seen that the exponential forward dynamics
of sigmoidal feed forward neural networks causes a rapid collapse of the input
geometry7. A similar scenario exists for the backward dynamics causing gra-
dients to drastically vanish or explode. Yang and Schoenholz [2017b] build on
previous works ([Poole et al., 2016],[Schoenholz et al., 2016]) and show that by
adding skip connections, the network adopts a sub-exponential or polynomial
forward and backward dynamic (depending on the non-linearity). This slower
convergence to the fixed points allows residual networks to ’hover’ over the edge
of chaos longer. This provides some theoretical justification as to why ResNets
with a large number of layers work well in practice.

The main results in Yang and Schoenholz [2017b] are:

• The forward dynamics for tanh and α-ReLU (α < 1) is polynomial with
depth.

• The backward dynamic for tanh is sub-exponential whereas the backward
dynamics for α-ReLU (α < 1) is asymptotically polynomial.

7The input geometry exponentially converge to the fixed point
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• ReLu exhibits exponential forward and backward dynamics asymptoti-
cally. One interesting observation is that not all gradient signals exhibit
exponential behaviour. The gradient norm with respect to the weights w is
independent of how far the gradient has propagated (it is constant). This,
however, is not the case with bias b for which it increases exponentially.

5.3 CNN

Convolutional Neural Networks have been crucial to the success of deep learning.
However, most of these deep models are only trainable by employing techniques
like residual connections and batch normalization. Although we have seen some
justification in support of techniques like residual connections (Section 5.2), it
is still unclear whether deep CNNs necessarily require these techniques for
successful training. Xiao et al. [2018] develop a mean field theory of CNNs to
investigate this issue by furthering works discussed above. One key difference
in the mean field assumption for CNNs is that instead of considering the large
width assumption i.e N → ∞ we assume a large number of channels i.e the
channels c in a filter tend to infinity.

Xiao et al. [2018] find that the mean field derivation for signal propagation
in CNNs is similar to that of [Poole et al., 2016] and the stability condition
is precisely the one that govern fully-connected networks (as discussed in Sec-
tion 5.1.1). Moreover, the fixed point analysis for CNNs leads to the same result
as in the case of feed-forward neural network. This means that for CNNs too,
there exists a phase transition boundary at χ1 = 1. For χ1 < 1, c∗ = 1 is a
stable fixed point and the network exists in an ordered phase where all pixels
converge to the same value. For χ1 > 1, there exists stable fixed point c∗ < 1.
This corresponds to the chaotic phase where all pixels values de-correlate.

The analysis for the backward propagation of the signal leads to the same
result as the one derived in Section 5.1.2. Thus, the network must stay in the
edge of chaos to ensure that gradient signals neither explode nor vanish as they
back-propagate through a convolutional network.

The authors note that although the order-to-chaos phase boundaries of fully-
connected and convolutional networks look identical, the underlying mean-field
theories differ. A novel aspect of the convolutional theory is the existence of
multiple depth scales that control signal propagation at different spatial fre-
quencies. In the large depth limit, signals can only propagate along modes
with minimal spatial structure; all other modes end up deteriorating, even at
criticality.

Xiao et al. [2018] push their analysis beyond mean-field theory by incorpo-
rating dynamical isometry [Pennington et al., 2017] for CNNs. They develop
a modified initialization scheme that allows for balanced propagation of signals
among all frequencies. They call this scheme Delta-Orthogonal initialization.
This scheme allows them to train ultra deep vanilla CNNs with no degradation
in performance.
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5.4 BatchNorm and Gradients

BatchNorm remain elusive in machine learning theory. On one hand, it clearly
works well in practice. On the other, there is no clear theory on why it works;
some theorized pre-conditioning leading to some notion of stability in training
because the landscape to optimize is much smoother, and the story seems to
have stopped there since [Santurkar et al., 2018]. Similar to Phase Transition
in Section 1.3, Yang et al. [2019] find the limits of phenomenons of interest: at
L < 50, gradient explosion is small because the gradients are small compared
to the weights and the weights don’t change much; at L > 50, explosion domi-
nates W ’s: weight norm decreases, and from t = 0 to t = 1, gradients cross the
threshold of |W | = |∇(·)|. The major contributions enabled by MFT includes
the mathematics to show that BatchNorm causes gradient explosion, enlarging
gradient norm with every layer by 1.47, and a linear activation is suggested to
minimize the explosion rate to b−2

b−3 where b denotes the batch size. This conclu-
sion is at odds with several other theories that postulate the stability benefits of
BatchNorm, suggesting that BatchNorm works through other benefits. In this
way, MFT made a difficult-to-test theory more feasible to study.

6 Stochastic Gradient Descent

The literature on the theory of deep learning is rapidly expanding, mostly to
cover more general networks and relaxing some of the assumptions on data ini-
tialization scheme, or from angles previously not used before. Since each paper
has its own setup, it is difficult to enumerate all the variations. For the purpose
of their paper, we touch on the use of mean field theory by providing its role in
some proof sketches. In studying the optimization dynamic of large neural net-
works, mean field theory is employed to simplify the problem. A popular limit
chosen is in the number of neurons per layer, and the type of resulting network
is often infinitely wide, and only two layers, often fully-connected [Chizat and
Bach, 2018, Jacot et al., 2018, Mei et al., 2018]. We now describe the math-
ematical tools associated with the most popular regime shared among recent
work.

6.1 Two Layer Neural Network Converges To Global Min-
ima

The paper by Mei et al. [2018] is concerned with coming up with a gradient flow
in the population risk. By taking advantage of the law of large numbers, their
mean-field formulation appears more inspired by physics than deep learning.
We sketch the proof strategy used in this paper.

The setup is a “mean-field regime”, where N ' D,D / k̄ ≤ n. Assuming
that at every time t we draw each parameter θ0

i ∼ i.i.d. ρ0, and that the σs of
our neurons are bounded by C in L∞-norm. Then we have the gradient with
respect to δ, σ to be a random variable because the input to the layer is assumed
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to be random.

θ̇i = −∇Ψ(θi)ρ̂
(N)
t )

ρ̂
(N)
t =

1

N

N∑
j=1

δθj (t)

The system describes a particle moving in the force field defined by these
other particles, following a non-linear dynamic. Recall that these are i.i.d.
trajectories, because θ0

i is drawn from ρ0. On the other hand, we formulate
a different system with θ̄i(t), which describes n independent initialization. The
evolution is described in a way akin to that of a system of particles in physics:

˙̄θ(t) = ∇Ψ(θ̄(t), ρt).

The system of θ̄ is then used to relate to θ, with θ̄i(0) = θ0
i so that they live in the

same probability space. Eventually, to show that the PDE written from gradient
flow approximates SGD, it suffices to bound the distance of this approximation
for some bounded function M :

dθ,θ̄(t) =
1

N

∑
i

|θi(t)− θ̄i(t)|2 ≤M(N, t,D)

Crucial to the main result, Mei et al. [2018] writes

SGD Dynamic can be seen as

{
∂tρt = ∇θ(ρt∇θΨ(θ, ρt))

Ψ(θ, ρ) = V (θ) +
∫
V (θ, θ̃)ρ(δθ̂)

where V (θ) = −E(yσ(xiθ)) and U(θ1θ2) = Exσ(xiθ1)σ(xiθ2).

This PDE describes the evolution of the particle in the force field provided by
the “density” of all the other particles. This strips N from the optimization at
large N , showing that the optimization does not infinitely scale with the number
of neurons. While a non-actionable result in empirical machine learning, this
suggests that over-parametrization is only part of the story why neural nets
work. Additionally, this formulation effectively reduces a N × D-dimensional
problem to a problem of only D dimension, and a very random process to a
somewhat deterministic one.

6.2 SGD Mean Field Discussion

This mean field setup differs tremendously from those in Section 5, taking a
purely phenomenological view of the training dynamic. It states that neural
networks parameters have a dual of interacting particles dictated by a potential
loss landscape, so that training describes an evolution of the interaction. This
allows the study of gradient dynamic that is very far from initialization, a large
expansion from its contemporary counterparts.
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The two mean fields may merge in the future. As of now, however, the
biggest weakness is that the assumptions made are extremely restrictive; an
open challenge lies in not just how to limit the width of each layer, but also
in how to extend this to multiple layers, mostly recently attempted by Nguyen
[2019] “non-rigorously”. While the scaling limits between neuron size N , num-
ber of steps k and dimension D are reasonable, the number of hidden layers
staying at 1 is unacceptable. In addition, the particle descent formulation re-
quires continuity equation, which is not rigorously shown to be convergent in
realistic settings. As is, this MFT formulation is thus unlikely to offer gener-
alizing insights to practitioners. However, this prototypical framing of particle
evolution abstracts away training dynamic from network features, thus allow-
ing for the novel application of diverse mathematics to study what makes deep
learning work, as seen in [Chizat and Bach, 2018] [Rotskoff and Vanden-Eijnden,
2018].

7 Conclusion

Explaining deep learning’s empirical success requires an intersection of acute
observation and appropriate approximation. Mean Field Theory is a power-
ful technique, uniquely applied to the scale and practice of deep learning. As
practitioners set out to fully understand and apply MFT, it is essential to un-
derstand the situations under which MFT is effective, the strategies to use, and
the limitations where the theory is inappropriate.

This survey paper motivates the use of MFT in deep learning through the
historical practice of mean-field methods in physics and statistics, with flavors of
factorization and self-averaging. Its general philosophy states that the study of
the phenomenon of the system can be divorced from the study of its parts, and
that the parts are self-consistent. In studying why neural networks work, this
abstraction is drastically different from the experimental methods that try to
isolate the widgets of the most affect. At the heart of its mathematics, mean field
approximation assumes some extent of independence among entities, making it
a suitable theoretic for studying practical regimes of over-parametrized neural
nets.

Throughout the survey, we discuss the ample restrictions in each of the MF
approximations. Like all theoretical models, MFT is wrong when its assump-
tions deviate from practice e.g. inconsistency near critical conditions, because
the fluctuations and correlations between particles are not modelled, or the
details of the phenomenon studied may also be much more diverse than the
averaging effects mean field theory assumes. To mitigate, higher order methods
are used, such as TAP correction.

We summarize current progress on connecting MFT to deep learning, a fast-
moving area of research. We introduce a specific formalism which is agnostic to
the scale of data and model. This MFT has been successfully applied to study
the behaviors of a variety of popular deep learning architectures. Though pow-
erful, MFT comes at a cost: mean-field modeling in deep learning necessarily
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simplifies the entire phenomenon. The results obtained are correct in the weak
sense: they are only exact under strict assumptions, and are otherwise approx-
imations. In complement, experimental work is used verify the phenomenons
derived through mathematics under those unrealistic assumptions. Future work
in MFT should consider second-order interactions when there are finite neu-
rons while extending the mathematics to be universal for all neural networks
features.
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8 Appendix

8.1 Derivation for ELBO

The log likelihood of the evidence can be written as follows,

logP (X) = log
∑
Z

P (Z,X)

= log
∑
Z

Q(Z|X)
P (X,Z)

Q(Z|X)
(Introduce a distribution Q(Z|X))

≥
∑
Z

Q(Z|X) log
P (X,Z)

Q(Z|X)
(By Jensen’s Inequality)

≥ EQ

[
log

(
P (X,Z)

Q(Z|X)

)]
≥ EQ [logP (X,Z)]− EQ [Q(Z|X)]

Thus,

ELBO(Q) = EQ [logP (X,Z)]− EQ [Q(Z|X)]

8.2 Variational Mean Field for the Ising model

Figure 8: Partition an Ising Model into observed and unobserved σ‘s.

We represent the state of each atom i by a random variable σi which takes values
+1 or -1. The marginal probability of a configuration of states σ, is represented
as:

p(σ) ∝ e−βH(σ)

The normalization factor Z =
∑
σ
e−βH(σ) requires the sum over a huge number

of configurations and so the exact marginal probability is often intractable (Sum
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over 2N and 2N
2

terms in case of 1D and 2D lattices which can be very large as
N increases).

Our main goal is to use mean field methods to approximate the probability of
a configuration of lattice points. One important thing to note is that, typically,
the true distribution is not in the variational family obtained by mean field. We
approximate the exact probability p(σ) with q(σ) such that q belongs to the
exponential family of distributions. We consider that q is fully factorizable :-

q(σ) =
∏
i∈V

qi(σi) =

N∏
i=1

qi(σi)

Our goal is to find q that acts a best approximation for p. For this we consider
minimizing the Kullback-Liebler divergence between the two distributions.

q(σ) = arg min
q

DKL ( q|| p)

The above optimization is generally done in a coordinate descent fashion
where we optimize the KL divergence with respect to a qi one at a time. We
first derive the result for minimizing the KL divergence between q and p with
respect to some constituent qk.

min
qk

DKL ( q|| p) = min
qk

DKL

(
N∏
i=1

qi

∣∣∣∣∣
∣∣∣∣∣ p
)

DKL

(
N∏
i=1

qi

∣∣∣∣∣
∣∣∣∣∣ p
)

=

∫
(

N∏
i=1

qi) log


N∏
j=1

qj

p

 dσ

=

∫ N∏
i=1

qi

N∑
j=1

log qjdσ −
∫ N∏

i=1

qi log p dσ + C

=

∫ N∏
i=1

qi log qk dσ +

∫ N∏
i=1

qi
∑
j 6=k

log qj dσ −
∫ N∏

i=1

qi log p dσ + C

=

∫
qk log qk dσk +

∫ ∏
i 6=k

qi
∑
i6=k

log qi dσ-k︸ ︷︷ ︸
constant wrt to qk

−
∫ N∏

i=1

qi log p dσ + C

=

∫
qk(log qk −

∫ ∏
i6=k

qi log p dσ-k)dσk + C
′

Let us consider r(σk) =
∫ ∏
i 6=k

qi log p dσ-k. We can normalize this to obtain a
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distribution s(σk) = er(σk)∫
er(σi)dσi

. Now, the above equation can be written as:

DKL

(
N∏
i=1

qi

∣∣∣∣∣
∣∣∣∣∣ p
)

=

∫
qk(log qk − log sk + log

∫
er(σi)dσi)︸ ︷︷ ︸

constant wrt to qk

dσk + C
′

=

∫
qk log

qk
sk
dσk + C”

∫
qkdσk︸ ︷︷ ︸
=1

+C
′

= DKL ( qk|| sk) + Constant wrt to qk

Hence, in order to minimize the KL divergence of variational distribution
q and p with respect to qk, we need to minimize the KL divergence between
distribution qk and sk. Setting qk = sk, we get

qk = sk

log qk =

∫ ∏
i 6=k

qi log p dσ-k + Constant wrt to σk

= Eq−k [log p] + C

We will now use this result and apply to the Ising model. We know that that
the joint probability of states is:

p(σ) ∝ e−βH(σ)

where H(σ) = − 1
2

N∑
i=1

N∑
j=1

Jσiσj −
N∑
i=1

Bσi

log qk(σk) = E [q−k]−βH(σ) + Constant + C

= βEq−k

Jσk ∑
i∈Nbr(k)

σi +Bσk + Constant wrt to σk

+ C
′

= βσk(J
∑

i∈Nbr(k)

E [σi]︸ ︷︷ ︸
µi

+B) + C”

= βσk (J
∑

i∈Nbr(k)

µi +B)

︸ ︷︷ ︸
H

+C”

qk(σk) = CeβHσk
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We will now find the value of the constant C.∫
qk(σk)dσk = 1

qk(σk = 1) + qk(σk = −1) = 1

CeβH + Ce−βH = 1

C =
1

eβH + e−βH

Thus,

qk(σk) =
eβHσk

eβH + e−βH

qk(σk = 1) = Sigmoid(2βH)

qk(σk = −1) = Sigmoid(−2βH)

µk = E [σk]

= qk(σk = 1)− qk(σk = −1)

=
eβH − e−βH

eβH + e−βH

= tanh(βH)

Note:

• Nbr(k) represents the nearest neighbours of lattice point k

• In the calculations above, we replaced Eq−k [σi] with E [σi] because:

Eq−k [σi] =

∫ ∏
j 6=k

qjσidσ−k

=

∫
qiσidσi

∫ ∏
j 6={k,i}

qjdσ−{k,i}︸ ︷︷ ︸
1

=

∫
qiσidσi = Eqi [σi]
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